- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
FitzGerald, Cody E (1)
-
Ko, Hungtang (1)
-
Kovács, István A (1)
-
Luzzatto, Leone V (1)
-
Munro, Edwin M (1)
-
Nirody, Jasmine A (1)
-
Wetherington, Miles T (1)
-
Zhang, Haibei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In unconfined environments, bacterial motility patterns are an explicit expression of the internal states of the cell. Bacteria operating a run-and-tumble behavioral program swim forward when in a ‘run’ state, and are stalled in place when in a reorienting ‘tumble’ state. However, in natural environments, motility dynamics often represent a convolution of bacterial behavior and environmental constraints. Recent investigations showed thatEscherichia coliswimming through highly confined porous media exhibit extended periods of ‘trapping’ punctuated by forward ‘hops’, a seemingly drastic restructuring of run-and-tumble behavior. We introduce a microfluidic device to systematically explore bacterial movement in a range of spatially structured environments, bridging the extremes of unconfined and highly confined conditions. We observe that trajectories reflecting unconstrained expression of run-and-tumble behavior and those reflecting ‘hop-and-trap’ dynamics coexist in all structured environments considered, with ensemble dynamics transitioning smoothly between these two extremes. We present a unifying ‘swim-and-stall’ framework to characterize this continuum of observed motility patterns and demonstrate that bacteria employing a consistent set of behavioral rules can present motility patterns that smoothly transition between the two extremes. Our results indicate that the control program underlying run-and-tumble motility is robust to changes in the environment, allowing flagellated bacteria to navigate and adapt to a diverse range of complex, dynamic habitats using the same set of behavioral rules.more » « less
An official website of the United States government
